2023年全国高考数学试卷大全
绝密★启封并使用完毕前
试题类型:A
2023年普通高等学校招生全国统一考试
理科数学详细解析
注意事项:
1.本试卷分二:2023年高考数学全国卷I理科试题及答案word
2023年全国卷I理科逐题述评
1.设复数z满足1?z?i,则|z|=1?z
(A)1(B
(C
(D)21?z?1?i(?1?i)(1?i)?(1?i)2
?i得1?z?i(1?z),即z?解析:由,z???i,1?z1?i(1?i)(1?i)2
|z|=1,选(A).
点评:本题跳出往年考查复数除法的传统直白模式,套用方程思想,由考生自行推导出?1?i,进而求出|z|(从这方面来讲,简单题增加了考生的运算量).形式简洁(甚至1?i
连“i是虚数单位”,“复数z的模”等说明性文字都未曾出现),增加了思维含量.当然,如?1?i果考生在平时的备考中,能拓展了解部分复数的模运算的性质,化简到z?,就可以1?iz?
利用分子和分母的模相等迅速得到|z|=1,不必将z?i计算出来,正所谓“失之东隅,收之桑榆”,不难看出命题人在躲避各地题海战术方面的良苦用心.
2.sin20cos10?cos160sin10=
(A
)????11(B
(C)?(D)22?????????解析:sin20cos10?cos160sin10?sin20cos10?cos20sin10?sin30,选
(D).
点评:本题涉及三角函数的三个考点:诱导公式cos(180??)??cos?、两角和与差?
公式sin(???)?sin?cos??cos?sin?的逆用、特殊角的三角函数值.其中由cos160???cos20?得进一步做题思路十分关键.
2n3.设命题p:?n?N,n?2,则?p为
(A)?n?N,n?2(B)?n?N,n?2(C)?n?N,n?2(D)2n2n2n
?n?N,n2?2n
解析:命题p含有存在性量词(特称命题),是真命题(如n?3时),则其否定(?p)含有全称量词(全称命题),是假命题,故选(C).
点评:涉及含有量词的命题的否定(也可视为复合命题中p与?p的关系)是近几年高考命题的热点,且常考常新.解答这类题,既可以套用命题的否定的套路(特称命题与全称
命题的转换),也可以从命题真假性的角度加以判断.
4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
(A)0.648(B)0.432(C)0.36(D)0.312
2解析:该同学通过测试的概率为C30.62?0.4?0.63?0.62(1.2?0.6)?0.648,或
11?0.43?C30.42?0.6?0.648,选(A).
点评:本题考查点集中在独立事件、互斥事件与对立事件,难度适中,突出了理科试题的特点.
x2
?y2?1上的一点,F1,F2是C的两个焦点,若5.已知M(x0,y0)是双曲线C:2
??????????MF1?MF2?0,则y0的取值范围是
,(B
)(?(C
)(?(D
)(?33663333
????????????????????C的交解析:从MF1F2为直径的圆与1?MF2?0入手考虑,MF1?MF2?0可得到以F(A
)(?
点M1,M2,M3,M4(不妨设M1,M2在左支上,M3,M4在右支上),此时M1F1?
M1F2,M1F1?M1F2??
F1F2?S?M1F1F2?
|y0|?11M1F1?M1F2?|y0|?
F1F2解得22?M或M?M上运动,y
?(,故选(A).,则M在双曲线的M01234点评:本题借助向量的数量积这一重要工具,融合了双曲线的定义、性质,考查了构造思想和等体积转化.是对研究和利用过往高考试题正能量的引导和极好的传承.美中不足的是本题运算量比较大,思维含量高,考查点比较综合,如果能放到三:2023高考数学全国卷(精美word版)
绝密★启封并使用完毕前
试题类型:A
2023年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要
求的.1+z
1.设复数z满足=i,则|z|=
1-z
A.1B.2C.3D.2
2.sin20°cos10°-cos160°sin10°=
331
A.-B.C.-D.
2222
3.设命题P:?n∈N,n2>2n,则¬P为
A.?n?N,n2>2nB.?n?N,n2≤2nC.?n?N,n2≤2nD.?n?N,n2=2n
4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各
次投篮是否投中相互独立,则该同学通过测试的概率为
A.0.648B.0.432C.0.36D.0.312
x22→→
5.已知M(x0,y0)是双曲线C:-y=1上的一点,F1、F2是C上的两个焦点,若MF1·MF2<0,则
2
y0的取值范围是
???22D.?-,?
A.-,B.-C.3633??3?6?3?3
6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,
高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛
→→
7.设D为△ABC所在平面内一点BC=3CD,则
1→414→A.AD=-ABACB.AD=AB-AC33334→141→C.AD=ABAC
D.AD=AB-AC3333
→→
→→
8.函数f(x)=cos(ωx+φ)的部分图像如图所示,则f(x)的单调递减区间为
1313
A.?kπ-,kπ+?(k∈Z)B.?2kπ2kπ+(k∈Z)
44?44??1313
C.?k-,k(k∈Z)D.?2k-,2k(k∈Z)
444?4?
9.执行右面的程序框图,如果输入的t=0.01,则输出的n=
A.5B.6C.7D.8
正视图
俯视图
10.(x2+x+y)5的展开式中,x5y2的系数为
A.10B.20C.30D.60(第11题图)
11.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图
如图所示.若该几何体的表面积为16+20π,则r=
A.1B.2C.4D.8
12.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是
333333
A.?-,1?B.?-?C.?D.?,1??2e??2e4??2e4?2e?
第II卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
13.若函数f(x)=xln(x+a+x)为偶函数,则a.
x2y2
14.一个圆经过椭圆+=1的三个顶点,且圆心在x轴上,则该圆的标准方程为.
164
??x-1≥0(1)y
15.若x,y满足约束条件?x-y≤0(2),则的最大值为.
x
?x+y-4≤0(3)?
16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
E
2
FSn为数列{an}的前n项和.已知an>0,an+2an=4Sn+4.
(Ⅰ)求{an}的通项公式;
A(Ⅱ)设bn=,求数列{bn}的前n项和.
anan+
CB
18.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,
DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.
19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)
和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
年宣传费/千元
表中w1=x1,,-=w8
?w
x+
(Ⅰ)根据散点图判断,y=a+bx与y=c+哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?
(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1v1),(u2v2),??,(unvn),其回归线v=???u的斜率和截距的最小二乘估计分别为:
n
u)(vi--v)?(ui--
u)2?(ui--
i=
β=
i=
n
α=-v-β-u
20.(本小题满分12分)
x2
在直角坐标系xoy中,曲线C:y=y=kx+a(a>0)交于M,N两点,
4
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
21.(本小题满分12分)
已知函数f(x)=x3+ax+g(x)=-lnx.
4
(Ⅰ)当a为何值时,x轴为曲线y=f(x)的切线;
(Ⅱ)用min?m,n?表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.
请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B
22.(本题满分10分)选修4-1:几何证明选讲如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA3CE,求∠ACB的大小.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;
π
(Ⅱ)若直线C3的极坐标方程为θ(ρ∈R),设C2与C3的交点为M、N,求△C2MN的面积.
4
24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.
(Ⅰ)当a=1时,求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.